2000.35.032

Description

Three phase energy meter with universal current input: current transformers with output in voltage or in current can be used on the same inputs.
One DIN box, perfect for electrical panel. Equipped with one serial output RS485 Modbus RTU for readings and one digital output for alarms. Configuration through free software.

Meter Characteristics

- Equivalent to class 0,5S (KWh) of EN62053-22
- Equivalent to class 0,5S (KVARh) of EN62053-24
- Accuracy $\pm 0,5 \%$ RDG
- Universal input for current measurement
- Energy meter
- TRMS measurements of distorted sine waves (voltages/currents)
- Neutral current measurement
- One digital output (mosfet) for alarms
- Serial RS485 output
- Alarms signaling through front led
- Dimension: 1 DIN module
- Three variants available: Standard, Plus, Pro

Variants

Standard - 2000.35.032	Plus	Pro
$\mathrm{V}_{\text {RMS LL }}$ e $\mathrm{V}_{\text {RMS LN }}$ [V]	Distorted power factor	Harmonics up to 63rd order
IRMS [A]	$\operatorname{Tan} \varphi$	Interharmonics
Power: - Active [W] - Reactive [VAR] - Apparent [VA]	Average, MAX and min: $\mathrm{V}_{\mathrm{LL}}, \mathrm{V}_{\mathrm{LN}}, \mathrm{I}, \mathrm{W}, \mathrm{VAR}, \mathrm{VA}$, $\operatorname{Cos} \varphi$	Power quality: - Sag - Swell - Interruption
$\operatorname{Cos} \varphi$	Phase sequence monitoring	
Crest Factor	Internal temperature [${ }^{\circ} \mathrm{C}$]	
Frequency [Hz]	MAX demand	Single phase device efficiency
Peaks on: - Voltage $\mathrm{V}_{\mathrm{LL}}[\mathrm{V}]$ - Voltage $\mathrm{V}_{\mathrm{LN}}[\mathrm{V}]$ - Currents I [A]	Time above given threshold for $\mathrm{P}_{1}, \mathrm{P}_{2}$, $\mathrm{P}_{3} \circ \mathrm{P}_{3 \mathrm{PH}}$	measurement
Energies (pos, neg, total): - Active [Wh] - Reactive [VARh] - Apparent [Vah]	Inverter input (PWM modulated input)	
	THD, TDD	

GENERAL SPECIFICATION

Power supply specifications	
AC/DC Voltage	$\text { 10-40 V } 19-28 V_{A C}$
Power consumption	:<0,7 W
Input specifications	
Working frequency	1-70 Hz
Voltage	
Impedance	: $400 \mathrm{~K} \Omega$
Nominal voltage U_{n}	$300 \mathrm{~V}_{\mathrm{LN}} / 500 \mathrm{~V}_{\mathrm{LL}}$
Continuous overload $\mathrm{U}_{\text {MAX }}$	400 V ${ }_{\text {LN }} / 700 \mathrm{~V}_{\mathrm{LL}}$
Overload for 500 ms	600 V 6 LN $/ 1000 \mathrm{~V}_{\mathrm{LL}}$
Current	
Type	Not isolated (external CTs necessary)
Current output CTs	
Nominal current I_{n}	$5 \mathrm{~A}_{\text {AC }}$
Crest factor	:<4 (20 APK MAX)
Impedance	:<0,5 VA per fase
Continuous overload $\mathrm{I}_{\text {MAX }}$	$6 A_{A C}$
Overload for 500 ms	40 A ${ }_{\text {AC }}$
Voltage output CTs	
Nominal voltage V_{n}	333 mV AC
Crest factor	< $<3\left(1 \mathrm{~V}_{\text {PK }} \mathrm{MAX}\right)$
Impedance	$220 \mathrm{~K} \Omega$
Continuous overload $\mathrm{V}_{\text {MAX }}$	2,1 V ${ }_{\text {PK }}$
Overload for 500 ms	$13 \mathrm{~V}_{\text {PK }}$
Accuracy@ $25 \pm 5{ }^{\circ} \mathrm{C}$; freq $=50 \mathrm{~Hz}$)	
Frequency	$\pm \pm 0,1 \mathrm{~Hz}(40.70 \mathrm{~Hz})$
Active energy	:class C according to EN50470-1/3 :class 0,5 S according to EN62053-22
Reactive energy (if measured, see ahead)	class 0,5 S according to EN62053-24
Power factor	$\pm(0,001+1 \%(1.00-P F)$)
Bandwidth (-3dB)	> 2 KHz
Thermal drift	<100 ppm/ ${ }^{\circ} \mathrm{C}$
Energy backup	:Via Flash, minimum lifetime: 3 years

Software functions

Measurement type	TRMS
Sampling rate	6400 samples/s @ 50 Hz , 7280 samples/s @ 60Hz
Measurement refresh rate	:Software configurable; :Default: 50 AC cycles :MAX: 65535 cycles

Transformer ratio	CT and VT default 1,0; software configurable
Transformer delay	0,0 050 Hz default; software configurable
Minimum display cutoff	Configurable on voltage, current and power
Output specifications	
RS485	
Baudrate	from 1200 to 115200 Baud (standard 9600)
Address	from 1 to 247
Protocol	Modbus RTU
Connection	Through 3 poles pluggable terminals (activated via software :as an alternative to the digital output) or via T-Bus (always :active)
Uscita digitale	
Use for	Alarms
Numbers	1 (activated via software as an alternative to the RS485)
Type	Solid state (Mosfet)
Max values	< $40 \mathrm{~V},<100 \mathrm{~mA}$

General specifications

Operating temperature	$-10^{\circ} \mathrm{C} .+60^{\circ} \mathrm{C}$
Storage temperature	$-40^{\circ} \mathrm{C} . .+85^{\circ} \mathrm{C}$
Humidity	10... 90% not condensing
Altitude	Up to 2000 m s.l.m.
Installation category	Cat. III (IEC 60664, EN60664)
Isolation	: $4 \mathrm{KV}_{\text {RMS }}$ between power supply and measuring inputs $4 \mathrm{KV}_{\text {RMS }}$ between RS485 and measuring inputs :1,5 KV RMS between power supply and RS485
Standards	
EMC / EMI	:EN61000-6-4; EN61000-6-2; EN61000-4-2; EN61000-4-3; :EN61000-4-4; EN61000-4-5; EN61000-4-6;
Safety	EN61010-1; EN61010-2-030;
Connections	: ${ }^{\circ} 1$ removable terminals pitch $3,5 \mathrm{~mm} 2$ poles $\mathrm{n}^{\circ} 1$ removable terminals pitch $3,5 \mathrm{~mm} 3$ poles ${ }^{\circ}{ }^{\circ} 1$ removable terminals pitch $3,5 \mathrm{~mm} 6$ poles : ${ }^{\circ} 1$ removable terminals pitch 5.08 mm 4 poles
Housing	
Dimensions	93 x 17, 9 x 68,3 mm (excluding terminal)
Material	PBT, gray
Dip-Switch	2 poles (for Baudrate and Address)
Protection degree IP.	IP20
Mounting	Din rail mounting, designed for tmounting on bus (connector not included)
Led	N ${ }^{\circ}$: Power (Green), Fail (yellow), TX e RX (red), Digital ooutput (Green)
Configuration	Comunication to free interface program for: -- configuration of all the available parameters; -- possibility of firmware upgrade (if available).

DIGITAL OUTPUT ALARMS

Rising: Normally open contact

Windowed: closed contact between thresholds

Falling: Normally closed contact

Windowed: closed contact outside thresholds

Note: To enable digital output alarms, RS485 terminals must be configured for digital output. Communication will be available only on T-BUS.

FRONTAL LEDS

Function	State	Note	
Power (green)	Steady on	Powered device	
Fail (yellow)	Blinking	Bootloader active.Can be executed through Modbus command, or because of program flash corruption.	
	Steady on	At least one of the following state is present:	
		Eeprom fail	Error on storing flash for settings, calibration or energies
		Phase reversal	Phase sequence L_{1}, L_{2} e L_{3} is not correct
		I_{i} or V_{i} over-range	Current or voltage phase i has a too high positive value
		I_{i} or V_{i} under-range	Current or voltage phase i has a too high negative value
RX (rosso)	Blinking	The device is receiving data from RS485	
TX (rosso)	Blinking	The device is sending data from RS485	
$\mathrm{D}_{\text {out }}$ (verde)	Steady on	Digital output is closed	

ADDITIONAL INFORMATION

ACCURACY (according to EN50470-3 and EN62053-24)

Wh, accuracy depending on the load (current output CT)

Wh, accuracy depending on the load (voltage output CT)

VARh, accuracy depending on the load (current output CT)

VARh, accuracy depending on the load (voltage output CT)

Note: Reactive power accuracy is granted if the instrument Q calculation is according Budeanu formula.

INSULATION BETWEEN INPUTS AND OUTPUTS

	Power supply	Measurement inputs	Communication port
Power supply		4 KV	$1,5 \mathrm{KV}$
Measurement inputs	4 KV		4 KV
Communication port	$1,5 \mathrm{KV}$	4 KV	

USED CALCULATION FORMULAS

Phase variables
RMS Voltage

$$
V_{i}=\sqrt{\frac{1}{N} \sum_{i}^{N}\left(v_{L}\right)_{i}^{2}}
$$

RMS Current

$$
I_{i}=\sqrt{\frac{1}{N} \sum_{1}^{N}\left(i_{L}\right)_{i}^{2}}
$$

Active Power

$$
P_{i}=\frac{1}{N} \sum_{i}^{N} v_{L i} i_{L i}
$$

Apparent Power

$$
S_{i}=V_{i} I_{i}
$$

Reactive Power

$$
\begin{aligned}
& Q_{i}=\frac{1}{N} * \sum_{1}^{N} v_{L i} \hat{I}_{L i} \text { Budeanu } \\
& Q_{i}=\sqrt{S_{i}^{2}-P_{i}^{2}} \quad \text { triangular }
\end{aligned}
$$

Power factor

$$
\cos \phi_{i}=\frac{P_{i}}{S}
$$

System variables
Voltage average

$$
V_{A V G}=\frac{V_{1}+V_{2}+V_{3}}{3}
$$

Current average
$I_{A V G}=\frac{I_{1}+I_{2}+I_{3}}{3}$
Three phase active power

$$
P_{3 P H}=P_{1}+P_{2}+P_{3}
$$

Three phase apparent power

$$
S_{3 P H}=S_{1}+S_{2}+S_{3}
$$

Three phase reactive power
$Q_{3 P H}=Q_{1}+Q_{2}+Q_{3}$

Three phase power factor

$$
\cos \phi_{3 P H}=\frac{P_{3 P H}}{S_{3 P H}}
$$

Energy metering

Active Energy

$$
W h_{i}=\int_{t_{1}}^{t_{2}} P_{i}(t) d t \approx \Delta t \sum_{n_{1}}^{n_{2}} P(n)_{i}
$$

Reactive Energy

$V A R n_{i}=\int_{t_{1}}^{t_{2}} Q_{i}(t) d t \approx \Delta t \sum_{n_{1}}^{n_{2}} Q(n)_{i}$
Apparent Energy

$$
V A h_{i}=\int_{t_{1}}^{t_{2}} S_{i}(t) d t \approx \Delta t \sum_{n_{1}}^{n_{2}} S(n)_{i}
$$

Where:
i= phase observed (L1, L2 or L3);
$\mathrm{P}=$ Active power;
$\mathrm{Q}=$ Reactive power;
$\mathrm{t} 1, \mathrm{t} 2=$ starting and ending time points of consumption recording; $n=$ time unit; $\mathrm{t}=$ time unit length;
$\mathrm{n} 1, \mathrm{n} 2$ = starting and ending discrete time points of consumption recording.

DIP SWITCH SETTINGS

DIP 1	DIP 2	
0	X	RS485 settings from Eeprom
1	0	Address 1, Baudrate 9600, no parity
1	1	Address 1, Baudrate 38400, no parity

WIRING DIAGRAMS

3-ph, 4 wires, 3 CTs connection

3-ph, 3 wires, 3 CTs connection
Fig. 3

3-ph, 3 wires, 2 CTs connection (Aron)

Monofase, 2 fili, connessione con 1 TA

Digital output on terminal 8-9-10 in digital output configuration

3-ph, 4 wires, 3 CTs and 3 VTs connection
Fig. 2

3-ph, 3 wires, 3 CTs and 3 VTs connection

3-ph, 3 wires, 2 CTs 3 VTs connection (Aron)

Monofase, 2 fili, connessione con 1 TA e 1 TV
 earthing of the device, to avoid damaging the device and reducing safety of the panel.

Communication via T-BUS (with the proper optional connector)

Communication con terminal 8-9-10 in RS485 configuration

"CONFIGURATION REGISTER" 40007

This 16 bit register sets the configuration of the device. Hereafter the details

Settings	Valore	Dettaglio
CT input type	xxxx xxxx xxxx xxx0	Current input (e.g. CT 5A)
	xxxx xxxx xxxx xxx1	Voltage input (e.g. CT 333 mV , Rogowski)
Insertion handling	xxxx xxxx xxxx x00x	Single phase insertion
		Three phase insertion: three wires, 2 CTs (Aron)
	xxxx xxxx xxxx x10x	Three phase insertion: three wires, 3 CTs
	xxxx x xxx $x x x x \times 11 \mathrm{x}$	Three phase insertion: four wires, 3 CTs
FFT representation	xxxx xxxx xxxx 0xxx	Absolute: each harmonic RMS is displayed.
	xxxx xxxx xxxx 1xxx	Relative to First harmonic: $\mathrm{X}_{\mathrm{n}} / \mathrm{X}_{1}$ is displayed.
Reactive power formula	xxxx xxxx xx0x xxxx	Triangular method: this method gives you an indirect reactive power measurement. It's the most used in energy meters.
	xxxx $\mathrm{xxxx} \mathrm{xx1x} \times \mathrm{xxx}$	Phase shifting method (Budeanu). This method measures reactive power directly. Accuracy is given with this method
8-9-10 terminal usage	xxxx xxxx x0xx xxxx	Used as RS485: $8=$ GND, 9 = B-, 10 = A-
	xxxx $\mathrm{xxxx} \times 1 \mathrm{xx} \mathrm{xxxx}$	Used as digital output between terminal 8 e 10. Communication RS485 is still present on T-Bus connector.
Frequency channel	xxxx xxxx 0xxx xxxx	Voltage channel, L1 phase
	xxxx xxxx 1xxx xxxx	Current channel, L1 phase
Voltage input type	xxxx xxx 0 xxxx xxxx	Standard load
	xxxx xxx1 $\mathrm{xxxx} \times \mathrm{xxx}$	PWM input voltage.
Energy saving		Saving disabled
	xxxx $\mathrm{xx} 1 \mathrm{x} \times \mathrm{xxxx} \times \mathrm{xxx}$	Saving enabled
Dynamic data representation	xxx0 0xxx xxxx xxxx	Float
	xxx0 1xxx xxxx xxxx	Float swapped
	xxx1 0xxx xxxx xxxx	Integer = Float/100
	xxx1 1xxx xxxx xxxx	Integer swapped = Float/100
Integrator	xx0x xxxx xxxx xxxx	Disabled
		Enabled, for Rogowski input
Digital output behaviour	x0xx x0xx xxxx xxxx	Rising: Normally open contact
	x1xx x0xx xxxx xxxx	Falling: Normally closed contact
	x0xx x1xx xxxx xxxx	Windowed: closed contact between thresholds
		Windowed: closed contact outside thresholds
Filtering	0xxx xxxx xxxx xxxx	Filtering disabled: less stable but faster measurement
	1xxx xxxx xxxx xxxx	Filtering enabled: more stable but slower measurement

Register Name	Description	Register Type	R/W	Default	Modbus Address
Machine_ld	Machine ID	unsigned short	R	23, 28 or 32 (STD, PLUS, PRO)	40001
HW_FW_version	Hardware (MSB) and Firmware (LSB) Revision	unsigned short	R		40002
address	modbus address	unsigned short	R/W	1	40003
delay	answer delay expressed as cycles	unsigned short	R/W	1	40004
Baudrate	$\begin{aligned} & 0 \rightarrow 1200 \\ & 1 \rightarrow 2400 \\ & 2 \rightarrow 4800 \\ & 3 \rightarrow 9600 \\ & 4 \rightarrow 19200 \\ & 5 \rightarrow 38400 \\ & 6 \rightarrow 57600 \\ & 7 \rightarrow 115200 \\ & \hline \end{aligned}$	unsigned short	R/W	3	40005
Parity	$\begin{aligned} & 0 \text { o> NONE } \\ & 1 \text {-> ODD } \\ & 2->\text { EVEN } \\ & \hline \end{aligned}$	unsigned short	R/W	0	40006
Configuration_Flag	Bit 0: Current Measurement type $0 \rightarrow$ Input 1A/5A $1 \rightarrow$ Input $333 \mathrm{mV} /$ Rogowski Bit 1..2: Connection $0 \rightarrow$ Single phase $1 \rightarrow$ Three phase: 3 wires, 2 CT (Aron) $2 \rightarrow$ Three phase: 3 wires, 3 CT $3 \rightarrow$ Three phase: 4 wires, 3 CT (with neutral) Bit 3: FFT representation $0 \rightarrow$ Absolute $1 \rightarrow$ Relative to the I1 value Bit 5: Reactive power calculation method $0 \rightarrow$ Triangle method $1 \rightarrow$ Budeanu Bit 6: RS-485 as Switch $0 \rightarrow$ RS-485 $1 \rightarrow$ Switch Bit 7: Frequency detection Channel $0 \rightarrow$ Voltage $1 \rightarrow$ Current Bit 8: Voltage input type $0 \rightarrow$ Normal load $1 \rightarrow$ PWM modulated input (Inverter Load) Bit 9: Energy saving $\underset{ }{0 \rightarrow} \rightarrow$ Disabled $1 \rightarrow$ Enabled Bit 11..12: Measurement type $0 \rightarrow$ Float $1 \rightarrow$ Float Swapped $2 \rightarrow$ Hundredth (Float * 100) $3 \rightarrow$ Hundredth swapped (Float * 100 SW) Bit 13: Integrator condition $0 \rightarrow$ Integrator disabled $1 \rightarrow$ Integrator enabled (Rogowski input) Bit 10, 14: Output switch initial condition $0 \rightarrow$ Closed initial condition $1 \rightarrow$ Windowed: closed contact between thresholds $2 \rightarrow$ Open initial condition $3 \rightarrow$ Windowed: closed contact outside thresholds Bit 15: Fittered measurement $0 \rightarrow$ Filtering disabled $1 \rightarrow$ Filtering enabled	unsigned short	R/W	16934: INPUT_1A_5A\| THREE_PHASE_4W_3CTI FFT_REPRESENTATION_ABSOLUTEI BUDEANU। RS485_BEHAVIOUR\| FREQUENCY_DETECTION_ON_VOLTAGE \| NORMAL_INPUT। ENERGY_SAVING_ENABLED \| FLOAT_TYPE \| INTEGRATOR_DISABLED I OPEN_COND\| FILTERED_OUTPUT_DISABLED	40007
Led_settings	Set Fail LED Bit: $0 \rightarrow$ Fail Eeprom (settings, calibration or Energy) $1 \rightarrow$ Phase reversal $2 \rightarrow$ I1 Over-range $3 \rightarrow$ I1 Under-range $4 \rightarrow$ I2 Over-range $5 \rightarrow$ I2 Under-range $6 \rightarrow$ I3 Over-range $7 \rightarrow$ I3 Under-range $8 \rightarrow$ V1 Over-range $9 \rightarrow$ V1 Under-range $10 \rightarrow$ V2 Over-range $11 \rightarrow$ V2 Under-range $12 \rightarrow$ V3 Over-range $13 \rightarrow$ V3 Under-range	unsigned short	R/W	1: Fail Eeprom	40008
CT_Transducer_ratio	If Input 1A/5A \rightarrow Current transformer ratio M/N (Ex: 600:5 \rightarrow transducer_ratio = 120) If Input Rogowski / 333mV \rightarrow ($1 /$ Sensitivity) $[A / N]$ (Ex: $100 \mathrm{mV} / 1 \mathrm{KA} \rightarrow$ transducer_ratio $=10000$, $333 \mathrm{mV} / 5 \mathrm{~A} \rightarrow$ transducer ratio $=15$)	float	R/W	1	40009
CT_Transducer_delay	Current transformer delay in [${ }^{\circ}$ @ 50 Hz for accurate power calculation	float	R/W	0	40011
VT_Transducer_ratio	Voltage transformer ratio M/N - Default 1.0 (Ex: 1000:100 \rightarrow transducer_ratio = 10)	float	R/W	1	40013
VT_Transducer_delay	Voltage transformer delay in [${ }^{\circ}$ @ 00 Hz for accurate power calculation	float	R/W	0	40015
minimum_voltage_ripple	Minimum threshold under which the instrument reads 0 independent from the input value	float	R/W	0	40017
minimum_current_ripple	Minimum threshold under which the instrument reads 0 independent from the input value	float	R/W	0	40019
minimum_power_ripple	Minimum threshold under which the instrument reads 0 independent from the input value (P, Q, and S)	float	R/W	0	40021
DC_Filter	Number of tenth seconds for I RMS value in DC	unsigned short	R/W	10	40023
AC_Filter	Number of zero crossings for IRMS value in AC	unsigned short	R/W	50	40024
minute_for_Max_demand	Minute for Max demand calculation (0..45)	unsigned short	R/W	15	40025
seconds_for_mean_RMS	Register in seconds (0..30) for RMS average	unsigned short	R/W	0	40027
seconds_for_MAX_RMS	Seconds 1.30 for MAX RMS value. If the register is 0, then the absolute MAX RMS is given	unsigned short	R/W	0	40028
seconds_for_min_RMS	Seconds $1 . .30$ for min RMS value. If the register is 0 , then the absolute min RMS is given	unsigned short	R/W	0	40029
Energy_unit_factor	Variable for changing Energy measurement unit: $\begin{aligned} & 0->[\mathrm{Wh} / 10] \\ & 1->[\mathrm{Wh}] \\ & 4 \rightarrow[\mathrm{KWh}] \\ & \hline \end{aligned}$	unsigned short	R/W	0	40030
Alarm_Register_start_addres		unsigned short	R/W	40361	40036
Alarm_trip_value	Alarm Threshold for "closed" and "open" condition OR first alarm Threshold for "within threshold" and "Out,	float	R/W	0	40037
Alarm_hysteresis	Alarm Hysteresis	float	R/W	1	40039
Alarm_trip_value_2	Second alarm Threshold for "within threshold" and "Outside threshold" condition	float	R/W		40041
Power_Threshold_for_exceed	Threshold for Power exceedings monitoring	float	R/W	0	40043
Nominal_Star_Voltage	Nominal Star Voltage for Sag, Swell, Interruption monitoring [V]	float	R/W	230	40045
Sag_percentage_level	Percentage over Nominal_Star_Voltage under which a Sag event is generated (default $0.9=90 \%$); must 1	float	R/W	0.9	40047
Swell_percentage_level	Percentage over Nominal_Star_Voltage over which a Swell event is generated (default $1.1=110 \%$)	float	R/W	1.1	40049
Interruption_percentage_leve	Percentage over Nominal_Star_Voltage under which an Interruption event is generated (default 0.1 $=10 \%$	float	R/W	0.1	40051
Minimum_duration_cutoff	Sag, Swell or Interruption events must be above this cutoff to be displayed and saved [ms]	unsigned short	R/W	0	40053

Register Name	Description	Register Type	R/W	Default	Modbus Address
Status_1	bit 0: flash settings error; bit 1: flash calibration error; bit 2: Current I1 Over Range; bit 3: Current I1 Under Range; bit 4: Current 12 Over Range; bit 5: Current I2 Under Range; bit 6: Current 13 Over Range; bit 7: Current I3 Under Range; bit 8: Current V1 Over Range; bit 9: Current V1 Under Range; bit 10: Current V2 Over Range; bit 11: Current V2 Under Range; bit 12: Current V3 Over Range; bit 13: Current V3 Under Range; bit 14: Zero crossing detecting; bit 15: Switch open; bit 16: Wh storing error; bit 17..18: don't care; bit 19: Alarm detection; bit 20..27: don't care; bit 28: Leading Power factor PF1; bit 29: Leading Power factor PF2; bit 30: Leading Power factor PF3;	unsigned long	R		40239
Command	```Flash settings save command \(=0 \times C 1 \mathrm{C} 0\); Reset command = 0xC1AO; Save energy command \(=0 \times B A B A\) Close Switch command = 0xDAAA (only if Digital Output is enabled) Open Switch command = 0xDAAB (only if Digital Output is enabled) Enter Bootloader command \(=0 \times B 000\) Reset MAX Demand registers command \(=0 \times 5000\)```	unsigned short	R/W		40244
KWh1	Active energy line 1 [Wh tenth]	signed long long	R/W		40245
KWh2	Active energy line 2 [Wh tenth]	signed long long	R/W		40249
KWh3	Active energy line 3 [Wh tenth]	signed long long	R/W		40253
KWh_SUM	Active energy three phase [Wh tenth]	signed long long	R/W		40257
KWh1_Plus	Positive Active energy line 1 [Wh tenth]	signed long long	R/W		40261
KWh2_Plus	Positive Active energy line 2 [Wh tenth]	signed long long	R/W		40265
KWh3_Plus	Positive Active energy line 3 [Wh tenth]	signed long long	R/W		40269
KWh_SUM_Plus	Positive Active energy three phase [Wh tenth]	signed long long	R/W		40273
KWh1_Neg	Negative Active energy line 1 [Wh tenth]	signed long long	R/W		40277
KWh2_Neg	Negative Active energy line 2 [Wh tenth]	signed long long	R/W		40281
KWh3_Neg	Negative Active energy line 3 [Wh tenth]	signed long long	R/W		40285
KWh_SUM_Neg	Negative Active energy three phase [Wh tenth]	signed long long	R/W		40289
KVARh1	Reactive energy line 1 [VARh tenth]	signed long long	R/W		40293
KVARh2	Reactive energy line 2 [VARh tenth]	signed long long	R/W		40297
KVARh3	Reactive energy line 3 [VARh tenth]	signed long long	R/W		40301
KVARh_SUM	Reactive energy three phase [VARh tenth]	signed long long	R/W		40305
KVARh1_Inductive	Inductive Reactive energy line 1 [VARh tenth]	signed long long	R/W		40309
KVARh2_Inductive	Inductive Reactive energy line 2 [VARh tenth]	signed long long	R/W		40313
KVARh3_Inductive	Inductive Reactive energy line 3 [VARh tenth]	signed long long	R/W		40317
KVARh_SUM_Inductive	Inductive Reactive energy three phase [VARh tenth]	signed long long	R/W		40321
KVARh1_Capacitive	Capacitive Reactive energy line 1 [VARh tenth]	signed long long	R/W		40325
KVARh2_Capacitive	Capacitive Reactive energy line 2 [VARh tenth]	signed long long	R/W		40329
KVARh3_Capacitive	Capacitive Reactive energy line 3 [VARh tenth]	signed long long	R/W		40333
KVARh_SUM_Capacitive	Capacitive Reactive energy three phase [VARh tenth]	signed long long	R/W		40337
KVAh1	Apparent energy line 1 [VAh tenth]	signed long long	R/W		40341
KVAh2	Apparent energy line 2 [VAh tenth]	signed long long	R/W		40345
KVAh3	Apparent energy line 3 [VAh tenth]	signed long long	R/W		40349
KVAh_SUM	Apparent energy three phase [VAh tenth]	signed long long	R/W		40353
Wh_storage_count	Number of Wh flash savings (every 20 seconds)	unsigned long	R		40357
V_L1_N	RMS star voltage L1-N [V]	float	R		40359
V_L2_N	RMS star voltage L2-N [V]	float	R		40361
V_L3_N	RMS star voltage L3-N [V]	float	R		40363
V_STAR_AVG	RMS star avg value voltage [V]	float	R		40365
V_L1_L2	RMS line voltage L1-L2 [V]	float	R		40367
V_L2_L3	RMS line voltage L2-L3 [V]	float	R		40369
V_L3_L1	RMS line voltage L3-L1 [V]	float	R		40371
V_LINE_AVG	RMS line avg value voltage [V]	float	R		40373
1-L1	RMS line current L1 [A]	float	R		40375
L-L2	RMS line current L2 [A]	float	R		40377
1_L3	RMS line current L3 [A]	float	R		40379
LN	RMS line current $\mathrm{N}[\mathrm{A}]$ (if 1 or 2 TA connection, $\mathrm{I} \mathrm{N}=0$)	float	R		40381
L_AVG	RMS avg value current [A] (excluding neutral current I_N)	float	R		40383
P1	RMS active power line 1 [W]	float	R		40385
P2	RMS active power line 2 [W]	float	R		40387
P3	RMS active power line 3 [W]	float	R		40389
P_SUM	RMS sum active power [W]	float	R		40391
Q1	RMS reactive power line 1 [VAR]	float	R		40393
Q2	RMS reactive power line 2 [VAR]	float	R		40395
Q3	RMS reactive power line 3 [VAR]	float	R		40397
Q_SUM	RMS sum reactive power [VAR]	float	R		40399
S1	RMS apparent power line 1 [VA]	float	R		40401
S2	RMS apparent power line 2 [VA]	float	R		40403
S3	RMS apparent power line 3 [VA]	float	R		40405
S_SUM	RMS sum apparent power [VA]	float	R		40407
PF1	Power Factor line 1	float	R		40409
PF2	Power Factor line 2	float	R		40411
PF3	Power Factor line 3	float	R		40413
PF_3PH	Three Phase Power Factor	float	R		40415
CF1	Crest Factor line 1	float	R		40417
CF2	Crest Factor line 2	float	R		40419
CF3	Crest Factor line 3	float	R		40421
CF_N	Crest Factor Neutral	float	R		40423
Frequency	Frequency [Hz]	float	R		40425
V_L1_N_peak	Star voltage L1-N peak [V]	float	RM		40427

Register Name	Description	Register Type	R/W	Default	Modbus Address
V_L2_N_peak	Star voltage L2-N peak [V]	float	R/W		40429
V_L3_N_peak	Star voltage L3-N peak [V]	float	R/W		40431
V_L1_L2_peak	Line voltage L1-L2 peak [V]	float	R/W		40433
V_L2_L3_peak	Line voltage L2-L3 peak [V]	float	R/W		40435
V_L3_L1_peak	Line voltage L3-L1 peak [V]	float	R/W		40437
1_L1_peak	L1 current peak [A]	float	R/W		40439
1_L2_peak	L2 current peak [A]	float	R/W		40441
1_L3_peak	L3 current peak [A]	float	R/W		40443
L_N_peak	N current peak [A]	float	R/W		40445
DPF1	Distortion Power Factor line 1 (+ inductive, - capacitive)	float	R		40467
DPF2	Distortion Power Factor line 2 (+ inductive, - capacitive)	float	R		40469
DPF3	Distortion Power Factor line 3 (+ inductive, - capacitive)	float	R		40471
DPF_N	Neutral Distortion Power Factor (+ inductive, - capacitive)	float	R		40473
TAN_FI_1	Tangenteline 1 (+ inductive, - capacitive)	float	R		40475
TAN_FI_2	Tangenteline 2 (+ inductive, - capacitive)	float	R		40477
TAN_FI_3	Tangenteline 3 (+ inductive, - capacitive)	float	R		40479
TAN_FI_AVG	Average Tangente(+ inductive, - capacitive)	float	R		40481
Phase_Order	L1, L2, L3 = 0; L1, L3, L2 = 1	float	R		40483
Internal_temperature	Internal Temperature $\left[{ }^{\circ} \mathrm{C}\right]$	float	R		40485
V_L1_N_RMS_AVG	Star voltage L1_N RMS average [V] over "seconds for_mean_RMS"	float	R		40487
V_L1_N_RMS_MAX	Star voltage L1 N MAX RMS [V] over last "seconds for_MAX_RMS"	float	R		40489
V_L1_N_RMS_min	Star voltage L1_N Min RMS [V] over last"seconds_for_min_RMS"	float	R		40491
V_L2_N_RMS_AVG	Star voltage L2_N RMS average [V] over "seconds for_mean_RMS"	float	R		40493
V_L2_N_RMS_MAX	Star voltage L2_N MAX RMS [V] over last "seconds for_MAX_RMS"	float	R		40495
V_L2_N_RMS_min	Star voltage L2_N Min RMS [V] over last"seconds_for_min_RMS"	float	R		40497
V_L3_N_RMS_AVG	Star voltage L3 N RMS average [V] over "seconds for mean RMS"	float	R		40499
V_L3_N_RMS_MAX	Star voltage L3_N MAX RMS [V] over last "seconds for_MAX_RMS"	float	R		40501
V_L3_N_RMS_min	Star voltage L3 N N Min RMS [V] over last"seconds for_min_RMS"	float	R		40503
V_STAR_AVG_RMS_AVG	Star voltage AVG RMS average [V] over "seconds_for_mean_RMS"	float	R		40505
V_STAR_AVG_RMS_MAX	Star voltage AVG MAX RMS [V] over last "seconds_for_MAX_RMS"	float	R		40507
V_STAR_AVG_RMS_min	Star voltage AVG Min RMS [V] over last"seconds_for_min_RMS"	float	R		40509
V_L1_L2_RMS_AVG	Line voltage L1-Line voltage L2-Line voltage L3-L1 RMS average [V] over "seconds_for_mean_RMS"	float	R		40511
V_L1_L2_RMS_MAX	Line voltage L1-Line voltage L2-Line voltage L3-L1 MAX RMS [V] over last "seconds_for_MAX_RMS"	float	R		40513
V_L1_L2_RMS_min	Line voltage L1-Line voltage L2-Line voltage L3-L1 Min RMS [V] over last"seconds_for_min_RMS"	float	R		40515
V_L2_L3_RMS_AVG	Line voltage L2-Line voltage L3-L1 RMS average [V] over "seconds_for_mean_RMS"	float	R		40517
V_L2_L3_RMS_MAX	Line voltage L2-Line voltage L3-L1 MAX RMS [V] over last "seconds_for_MAX_RMS"	float	R		40519
V_L2_L3_RMS_min	Line voltage L2-Line voltage L3-L1 Min RMS [V] over last"seconds_for_min_RMS"	float	R		40521
V_L3_L1_RMS_AVG	Line voltage L3-L1 RMS average [V] over "seconds_for_mean_RMS"	float	R		40523
V_L3_L1_RMS_MAX	Line voltage L3-L1 MAX RMS [V] over last "seconds_for_MAX_RMS"	float	R		40525
V_L3_L1_RMS_min	Line voltage L3-L1 Min RMS [V] over last"seconds_for_min_RMS"	float	R		40527
V_LINE_AVG_RMS_AVG	Line voltage AVG RMS average [V] over "seconds_for_mean_RMS"	float	R		40529
V_LINE_AVG_RMS_MAX	Line voltage AVG MAX RMS [V] over last "seconds_for_MAX_RMS"	float	R		40531
V_LINE_AVG_RMS_min	Line voltage AVG Min RMS [V] over last"seconds_for_min_RMS"	float	R		40533
I_L1_RMS_AVG	L1 RMS average [A] over "seconds_for_mean_RMS"	float	R		40535
1_L1_RMS_MAX	L1 MAX RMS [A] over last "seconds for_MAX_RMS"	float	R		40537
ILL_RMS_min	L1 Min RMS [A] over last"seconds_for_min_RMS"	float	R		40539
I_L2_RMS_AVG	L2 RMS average [A] over "seconds_for_mean_RMS"	float	R		40541
1_L2_RMS_MAX	L2 MAX RMS [A] over last "seconds for_MAX_RMS"	float	R		40543
LL2_RMS_min	L2 Min RMS [A] over last"seconds_for_min_RMS"	float	R		40545
1_L3_RMS_AVG	L3 RMS average [A] over "seconds_for_mean_RMS"	float	R		40547
1_L3_RMS_MAX	L3 MAX RMS [A] over last "seconds_for_MAX_RMS"	float	R		40549
I_L3_RMS_min	L3 Min RMS [A] over last"seconds for_min_RMS"	float	R		40551
I_N_RMS_AVG	N RMS average [A] over "seconds for_mean_RMS"	float	R		40553
I_N_RMS_MAX	N MAX RMS [A] over last "seconds_for_MAX_RMS"	float	R		40555
I_N_RMS_min	N Min RMS [A] over last"seconds for_min_RMS"	float	R		40557
I_AVG_RMS_AVG	L_AVG RMS average [A] over "seconds for_mean_RMS"	float	R		40559
LAVG_RMS_MAX	L_AVG MAX RMS [A] over last "seconds for_MAX_RMS"	float	R		40561
1_AVG_RMS_min	L_AVG Min RMS [A] over last"seconds_for_min_RMS"	float	R		40563
P1_RMS_AVG	P1 RMS average [A] over "seconds_for_mean_RMS"	float	R		40565
P1_RMS_MAX	P1 MAX RMS [A] over last "seconds_for_MAX_RMS"	float	R		40567
P1_RMS_min	P1 Min RMS [A] over last"seconds_for_min_RMS"	float	R		40569
P2_RMS_AVG	P2 RMS average [A] over "seconds_for_mean_RMS"	float	R		40571
P2_RMS_MAX	P2 MAX RMS [A] over last "seconds_for_MAX_RMS"	float	R		40573
P2_RMS_min	P2 Min RMS [A] over last"seconds_for_min_RMS"	float	R		40575
P3_RMS_AVG	P3 RMS average [A] over "seconds_for_mean_RMS"	float	R		40577
P3_RMS_MAX	P3 MAX RMS [A] over last "seconds_for_MAX_RMS"	float	R		40579
P3_RMS_min	P3 Min RMS [A] over last"seconds_for_min_RMS"	float	R		40581
P_SUM_RMS_AVG	P_SUM RMS average [A] over "seconds_for_mean_RMS"	float	R		40583
P_SUM_RMS_MAX	P_SUM MAX RMS [A] over last "seconds_for_MAX_RMS"	float	R		40585
P_SUM_RMS_min	P_SUM Min RMS [A] over last"seconds_for_min_RMS"	float	R		40587
Q1_RMS_AVG	Q1 RMS average [A] over "seconds_for_mean_RMS"	float	R		40589
Q1_RMS_MAX	Q1 MAX RMS [A] over last "seconds_for_MAX_RMS"	float	R		40591
Q1_RMS_min	Q1 Min RMS [A] over last"seconds for_min_RMS"	float	R		40593
Q2_RMS_AVG	Q2 RMS average [A] over "seconds for_mean_RMS"	float	R		40595
Q2_RMS_MAX	Q2 MAX RMS [A] over last "seconds_for_MAX_RMS"	float	R		40597
Q2_RMS_min	Q2 Min RMS [A] over last"seconds for_min_RMS"	float	R		40599
Q3_RMS_AVG	Q3 RMS average [A] over "seconds_for_mean_RMS"	float	R		40601
Q3_RMS_MAX	Q3 MAX RMS [A] over last "seconds_for_MAX_RMS"	float	R		40603
Q3_RMS_min	Q3 Min RMS [A] over last"seconds_for_min_RMS"	float	R		40605
Q_SUM_RMS_AVG	Q_SUM RMS average [A] over "seconds_for_mean_RMS"	float	R		40607
Q_SUM_RMS_MAX	Q_SUM MAX RMS [A] over last "seconds_for_MAX_RMS"	float	R		40609
Q_SUM_RMS_min	Q_SUM Min RMS [A] over last"seconds_for_min_RMS"	float	R		40611
S1_RMS_AVG	S1 RMS average [A] over "seconds_for_mean_RMS"	float	R		40613
S1_RMS_MAX	S1 MAX RMS [A] over last "seconds_for_MAX_RMS"	float	R		40615
S1_RMS_min	S1 Min RMS [A] over last"seconds for_min_RMS"	float	R		40617
S2_RMS_AVG	S2 RMS average [A] over "seconds for_mean_RMS"	float	R		40619
S2_RMS_MAX	S2 MAX RMS [A] over last "seconds_for_MAX_RMS"	float	R		40621
S2_RMS_min	S2 Min RMS [A] over last"seconds for_min_RMS"	float	R		40623
S3_RMS_AVG	S3 RMS average [A] over "seconds_for_mean_RMS"	float	R		40625
S3_RMS_MAX	S3 MAX RMS [A] over last "seconds_for_MAX_RMS"	float	R		40627
S3_RMS_min	S3 Min RMS [A] over last"seconds_for_min_RMS"	float	R		40629
S_SUM_RMS_AVG	S_SUM RMS average [A] over "seconds_for_mean_RMS"	float	R		40631
S_SUM_RMS_MAX	S_SUM MAX RMS [A] over last "seconds for_MAX_RMS"	float	R		40633
S_SUM_RMS_min	S_SUM Min RMS [A] over last"seconds_for_min_RMS"	float	R		40635

